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1 | INTRODUCTION

The use of computational search to optimize water infras-
tructure is well-established. Optimization in water distri-
bution network (WDN) design was initially tackled with

This study addresses complex multi-objective optimization challenges in large-
scale, real-world water distribution networks (WDNs). The primary objectives
are to improve a water quality index (water age) and network resilience by
optimizing pipe diameters and network topology as decision variables. The
proposed approaches leverage the non-dominated sorting genetic algorithm
IT (NSGA-II) producing Pareto optimal alternatives for water utility decision-
makers. To enhance computational convergence runtime and solution quality of
optimization, novel techniques are employed. These include advanced NSGA-II
constraint handling, search space reduction, graph theory-based formulation of
decision variables, constraints, and objective functions, as well as multi-stage and
hydraulic-free optimization strategies. Furthermore, soft constraints are relaxed
and integrated into Pareto decision-making spaces to provide a comprehen-
sive, multi-criteria decision-making framework. The approaches are applied to a
real case study, and the results demonstrate optimization performance improve-
ments, with efficiency increasing by approximately 20% (in terms of convergence
speed). Additionally, water age is reduced by 52% while achieving favorable
results in the hydraulic and topological criteria. These findings highlight the
effectiveness of the proposed methodologies in addressing WDN optimization
challenges.

a single-objective linear programming algorithm (tech-
nique), which selects pipe diameters (decision variables)
for small synthetic networks, minimizing design costs
(objective function) while keeping nodes’ piezometric
heads higher than desirable values (a system constraint)
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(Alperovits & Shamir, 1977). Since then, developments
on WDN optimization algorithms’ main elements, which
are objective function, decision variables, constraints, and
techniques, that is, linear or nonlinear mathematical mod-
eling, have advanced to higher degrees of complexity
(Mala-Jetmarova et al., 2018).

Regarding advancements in objective functions, opti-
mization techniques have evolved from single-objective
to multi-objective algorithms for solving WDN problems
with conflicting goals, typically balancing total network
cost with hydraulic performance (resilience or reliabil-
ity) to be minimized and maximized (Minaei et al., 2019;
Todini, 2000; Zheng et al., 2016).

The most used decision variables in optimization prob-
lems have been pipe diameters, the sizing of which is
the engineers’ main objective (Cisty et al., 2016; Dandy
et al.,, 1996; Muhammed et al.,, 2017). In this context,
researchers recently introduced a pipe removal action to
decision variables in a novel approach aimed at optimiz-
ing real-world WDN topology. Notably, Vertommen et al.
(2022) partly changed a large-scale WDN topology from
looped to tree shape through the pipe removal strategy
for improving water age at demand nodes (DNs). How-
ever, they did not develop a method through which water
age is calculated within the optimization process, and
instead they introduced network volume (pipes diame-
ter times pipes length as a substitute objective with water
age). Minaei et al. (2023) proposed pipe removal interven-
tions for decoupling an old WDN from its neighboring
systems, that is, sewer and road networks, to optimize
the WDN layout minimizing the risk of cascading failures
between neighboring systems. However, they did not pro-
pose efficiency improvement methods for topology change
optimization, which is a very challenging optimization
problem.

Constraints in WDN optimization problems have been
classified into three categories (Mala-Jetmarova et al.,
2018):

* Hydraulic constraints dictated by physical laws gov-
erning fluid flow in pipe networks, such as the conser-
vation of mass.

» System constraints imposed by operational and design
requirements, including minimum/maximum pressure
at DNs.

¢ Constraints on decision variables, such as limita-
tions on pipe diameters.

Approaches for handling these constraints include
integrating hydraulic solvers (e.g., EPANET) for auto-
mated hydraulic constraint enforcement, using a standard
penalty function (Kang & Lansey, 2012), applying a penalty
function with a self-adaptive penalty multiplier (Wu &
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Simpson, 2002), or employing (modified) constraint tour-
nament selection (Minaei et al., 2020).

While hydraulic constraints are essential in optimiza-
tion models, Mala-Jetmarova et al. (2018) found that
5% of models in the literature impose no constraints,
mainly in multi-objective optimization, where pressure
requirements are treated as objectives rather than con-
straints. Nearly half (48%) of the models include only one
constraint, typically the minimum pressure requirement.
About 25% incorporate two constraints, while 13% and 9%
of models feature exactly three and four or more (up to 10)
system constraints, respectively.

Various evolutionary, nature-inspired, and meta-
heuristic optimization algorithms—such as genetic,
harmony search, and spiral dynamic algorithms—have
been developed to tackle complex optimization problems
beyond WDNs (Adeli & Cheng, 1994; Siddique & Adeli,
2014, 2015). The stochastic nature of WDN optimiza-
tion problems makes them well-suited to these types of
algorithms.

Among the optimization algorithms” techniques, the
genetic algorithm (GA), an evolutionary method follow-
ing Darwin’s evolution law (Goldberg, 2013), is a well-
established technique for solving WDNSs problems in the
literature. When it comes to multi-objective optimization
problems, the non-dominated sorting genetic algorithm
IT (NSGA-II; Deb et al., 2002) has gained popularity and
has been used by many researchers (Jafari et al., 2021;
Wang et al., 2023; Zhao et al., 2019). These algorithms solve
optimization problems stochastically, where solutions and
decision variables represent chromosomes and genes in
GA.

Diverse case studies from small to large sizes have
been used in the literature concerning WDN optimization
problems to show the application of optimization models.
For instance, Alperovits and Shamir (1977) demonstrated
the application of the optimization algorithm to a two-
loop network supplied by gravity (incl. seven junctions).
More recently, Santonastaso et al. (2021) demonstrated the
applicability of such methods for finding efficient quality
detection points in a network with 999 junctions. Opti-
mizations for pressure and leakage management in two
real WDNs, one with 10,100 and another with 992 junctions
were presented by Ulusoy et al. (2022) and Shahhosseini
et al. (2023), respectively. Mottahedin et al. (2023) solved
a leakage rehabilitation optimization problem for a net-
work with 2869 junctions, and Moeini and Abokifa (2024)
applied Bayesian optimization to chlorine management in
WDNs demonstrating its effectiveness for a network with
113 junctions.

Looking at all applications, two important challenges
emerge: The first concern is the degree to which optimiza-
tion results are applicable in real industrial projects. In this
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regard, Walski (2014) noted the lack of practical consid-
erations in many WDN optimization studies, which often
leads to non-applicable master plans for WDN design.
The second challenge is the inefficiency of the stochas-
tic optimization models in identifying near-global optimal
solutions. As the size of the networks grew, inefficiency
became more evident. This is because the search space for
large networks is very large, and exploring such spaces
often incurs incredibly high computational costs. Hence,
some studies paid attention to the optimizations’ com-
putational efficiencies and ways to improve optimization
convergence (Bi et al., 2015; Zecchin et al., 2005; Zheng
et al., 2017).

Various strategies have been proposed to enhance
the computational efficiency of complex optimization
problems. These strategies generally fall into two cate-
gories: inside-engine methods, which focus on improv-
ing the core mechanics of the optimization algorithms,
and outside-engine methods, which target the initial and
boundary conditions of the problem itself. Inside-engine
approaches involve modifying the algorithmic framework
or key parameters to enhance performance. For instance,
Hao et al. (2022) improved the global search capabil-
ity of NSGA-II by integrating Lévy distribution into the
non-dominated sorting and solution diversification pro-
cesses. Similarly, efforts to optimize tournament selection,
mutation, and crossover parameters have been made to
further enhance NSGA-II’s performance (Antkiewicz &
Myszkowski, 2024; Carles-Bou & Galan, 2023; Yi et al.,
2020).

On the other hand, outside-engine methods focus on
engineering the problem setup itself—by refining case
study formulations, manipulating decision variables, inter-
changing and tuning the number of objectives and system
constraints, or developing surrogate models. Riyahi et al.
(2023) categorized these methods into four distinct groups:

* Graph topology-informed methods: These methods
utilize graph theory algorithms, such as the shortest
path algorithm, or topological indices to develop sur-
rogate models for optimization problems (Pudasaini &
Shahandashti, 2020; Sitzenfrei et al., 2020). Instead of
directly generating optimal solutions, optimization algo-
rithms are primarily used to validate the results of the
surrogate models.

* Expert choice methods: In this approach, expert judg-
ment is leveraged to generate the initial population for
optimization algorithms based on the specific nature of
the problem (Minaei et al., 2020).

* Multi-stage optimization methods: This method
involves a multi-stage optimization process where sub-
optimal solutions are initially generated using different
parameter scenarios. These suboptimal (warm start)
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solutions are then refined in subsequent optimiza-
tion stages (Cisty et al., 2016; Hajibabaei et al., 2024;
McClymont et al., 2013).

* Gene coding scheme: This approach enhances conver-
gence speed by employing a novel gene coding scheme
inspired by topological and hydraulic metrics (Diao
et al., 2022).

In all the efficiency-improving studies, the primary
assumption is the fixed topology of the network over
a design period. This is an important assumption as
topology changes within an optimization process increase
immensely the number of infeasible solutions generated
in every optimization generation, leading to a slow opti-
mization convergence (Simpson et al., 1994). Additionally,
the studies on improving the efficiency of optimization
for minimizing the water age in real-world WDNs are
few due to the necessity for extended period simulation
of such problems. This study aims to address this critical
research gap by developing efficiency-enhancing meth-
ods that consider changes in large-scale network topology
while improving both water age and resilience. In this
study, the efficiency improving approaches focus only on
the outside-engine methods and not improving or develop-
ing a new engine core of NSGA-II. Moreover, we propose
a comprehensive multi-criteria post-optimization scheme
increasing the applicability of designed master plans out
of optimizations. Ultimately, our research will provide a
clear roadmap for future studies on efficient optimiza-
tion algorithms for various types of WDN optimization
problems.

2 | METHODOLOGY

The methodology includes the following five subsections:
(1) hierarchical, topological, and graph characteristics of
WDN:s; (2) reference study’s optimization (RSO) approach;
(3) strategies for enhancing the computational efficiency
of RSO; (4) post hoc multi-criteria decision making; and
(5) summary and computational assessment for the design
approaches, described in detail in the following subsec-
tions. The first subsection enables readers to understand
the technical topological, graphical, and hydraulic terms
used in the subsequent subsections. The second subsection
explains the original study work on which improve-
ments are carried out by the current study. Subsection
three explains the ways through which the computational
efficiency and flexibility of the original study’s design
approach can be improved. The fourth subsection explains
how every solution on a Pareto front can be assessed
by different criteria, and the fifth subsection summarizes
differences between efficiency-improving approaches and
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TABLE 1
2022).
Explanation Regulation
Primary Pipelines with Dj > 300 mm,
primarily responsible for bulk
water transport without direct
customer connections (CCs)
Secondary Pipelines with 160-300 mm
diameter, responsible for
distributing water. These pipes
may include CCs as needed
Tertiary Pipelines with 40-160 mm

diameters, typically used for standards

CCs in the WDN

Double Fed Cluster (DFC)

B
I

A Root Node (RN)
@ Highest Elevated Node (HEN)

----- Feeding Pipe
HEN &%
8 o w====_Primary Part Pipe
g >&'D S c\i/ P rtpP'
"0 0 econdary Part Pipe
I/\J &w

Tertiary Part Pipe
r===n Shortest Path
&% Customer Connections (CCs)

Demand Node in the Network

(iSingIe Fed Cluster (SFC)

Fire Hydrant Node
¢  Green Space Node (GSN)

FIGURE 1 A conceptualized water distribution network
(WDN) with different components.

computational aspect for convergency of the optimization
models.

2.1 | Hierarchical, topological, and graph
characteristics of WDNSs

Different sections of a WDN serve distinct functions and
have varying levels of importance in ensuring water supply
to customers. Vertommen et al. (2022) classified the com-
plex topology of large-scale WDNs into three categories
based on Dutch definitions:

1. Primary network
2. Secondary network
3. Tertiary network

A detailed explanation of these classifications is pro-
vided in Table 1. Figure 1 shows a conceptualized multi-
reservoir WDN in which primary, secondary, and tertiary
parts are identified. Among the three parts, the tertiary has
great importance due to the inclusion of a high number of

Based on Dutch drinking water law,
guaranteeing reliable water
distribution and system resilience

Robust system design ensuring
uninterrupted water delivery during
hydraulic disturbances, maintaining
water quality, and, whenever possible,
protecting public health and reliability.

Meeting fire flow and water quality

@ MINAEI ET AL.

Properties of primary, secondary and tertiary water distribution network (WDN) parts in real-world WDN (Vertommen et al.,

Design shape

Looped configuration

The system uses loops for
redundancy, aiming to reduce
pipe diameters and promote
unidirectional flow for improved
efficiency and control

Branched, avoiding sediment
with flushing

downstream customer connections (CCs). Moreover, these
parts are usually at the furthest points from reservoirs,
hence having the largest values of the water age (Note all
symbols are defined in the nomenclature in this paper).

The tertiary part includes clusters that can be either
single-fed clusters (SFCs), which are fed by only one
pipe connected to the secondary part of the network or
multiple-fed clusters where they are fed by more than one
pipe connected to the secondary part (like the double fed
cluster in Figure 1). However, SFCs are important as the
CCs in SFCs are at a higher water supply risk, meaning
that the failure of feeding pipes isolates customers from
reservoirs due to the lack of redundant paths.

Junctions in a layout could have different functionali-
ties. Some of these relate to DNs that receive water over a
24-h period. Moreover, they could be fire hydrant or green
space nodes (GSNs) that are operational only at specific
times over an extended period. Different types of junc-
tions in a WDN model are depicted in Figure 1. Among
the junctions, root nodes (RNs) play the role of a feeding
source for the associated SFCs. Hence, an RN needs to have
sufficient piezometric head (hydraulic pressure plus eleva-
tion) to feed the associated SFC. The highest elevated node
(HEN) in an SFC has a higher probability of being fully or
partially unsupplied, compared to other DNs in the asso-
ciated SFC. Hence, a higher piezometric head of the RN
compared to the HEN guarantees a supply to all nodes of
the associated SFC.

A WDN can be demonstrated as a graph G, consisting
of a set of vertices (e.g., DNs) and edges (e.g., pipes). The
shortest path index is a well-established graph metric used
to approximate the path of a water particle traveling from a
source, such as a reservoir, to a DN. The shortest path, o,
in G is the path between demand nodes z and k that has the
minimal sum of positive edge weights, also referred to as
the minimal path length; for example, in Figure 1, among
all available paths from reservoirs to the GSN, the shortest

85US0 SUOWILLOD dAIER1D 3(edtjdde ayy Aq paueAoB 9.8 Sajo11e YO B8N JO Sa|N. 40} AReud17 8ulUO AB|IM UO (SUORIPLOI-PUE-SLUIBY 0D A8 | 1M Ae.d 1[pU1|UO//:SANY) SUOIPUOD Pue SWid L 84} 89S *[G202/60/TT] uo AriqiTauluo AB]1M ‘900 @01W/TTTT OT/I0p/W0D A8 1M ARe.d 1 pU1|UO//SARY WOy papeoumMod ‘0 ‘2998/9vT



MINAEI ET AL.

path is associated only with Reservoir 1 as indicated by the
dots. The shortest path length can be defined in various
ways depending on the weight assigned to each pipe, such
as the shortest Euclidean distance, least friction losses, or
shortest residence time (Sitzenfrei et al., 2020).

In line with mimicking the flow path, another relevant
graph metric is the edge betweenness centrality (EBC)
for each pipe j, which measures how frequently an edge
Jj appears in the shortest path from a source s to every
demand node z € DNs (Brandes, 2008). Specifically, for
WDN analysis, Sitzenfrei et al. (2020) introduced a mod-
ified version, demand-weighted EBC (EBCQ(j)), which
adjusts the shortest path by incorporating the demand Q,
of DN z to EBCQ(j) along o ,,

EBCQ(j)= ), 05:())- Qz lo, > QZ] )

Z=DNs EDNs

The interval in front of X in Equation (1) shows the range
of values that can be taken on by EBCQ(j). This changes
from 0, meaning that edge j is never located in the shortest

path,to Y Q, meaning thatedge j is in the shortest path
ZDNs
of all DNs connected to the sources.

2.2 | RSO approach

Vertommen et al. (2022) proposed an approach for solv-
ing a real-world WDN problem concerning high water
age levels at the consumption nodes, prompting the need
for a network redesign. This redesign involved optimizing
both the pipe diameters and the overall topology to effec-
tively tackle the water quality issue. Hence, Vertommen
et al. (2022) formulated an optimization problem using
GA, to solve the problem with one objective, where n p» SP
and PP are the number of pipes, secondary and primary
parts, respectively, and P; — P, stand for the penalty func-
tions (explained by Equations 3-6), respectively; D; € cd
meaning diameters belong to the set of commercial pipe
diameters (cd) ranging from the smallest available diame-
ters to the largest, and L; refers to the length of pipe j;j =1,
..., Np; As can be seen, only the pipes belonging to sec-
ondary and primary sections participate in the calculation
of the objective function.

"p

Minimize )" D; - L; + Py + P, + Py + P,,V; € SP U PP

Jj=1
2
The pipe removal action completes through assigning
the fictitious 0.0001 mm diameter to pipes within the
optimization process. Hence, decision variables involve
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pipe resizing with the set of commercial diameters plus
topology changes through pipe removal action.

In their study, the hydraulic constraints were met
through using hydraulic solver (EPANET 2.2). There are
four system constraints in the problem referring to both
hydraulic and topological aspects of the network handled
by penalty functions and evaluated by Equations (3)—(6).

In Equation (3), c¢; is a penalty factor that could take
different ranges of values, from small values to infinity,
depending on the importance of the associated constraint
defined by decision-makers. p,,; stands for enforced
pressure at RNs, AZ; represents the elevation difference
between RN and the highest elevated node for the asso-
ciated SFC i, where i =1,...,05pcs, and ngpcg is the
number of SFCs. p; refers to the water pressure at RN
i, and i = 1,...,ngy, Where ngyg is the number of RNs.
SFCs and RNs stand for the SFCs and RN sets, respec-
tively, and these two sets have the equal number of
members.

Py =c¢ymax+ 0, max
iERNs & SFCs

{penf + AZi - pi} } (3)

In Equation (4), ¢, is a penalty factor, p, is the pressure
at every DN z where z belongs to the DNs set, DNs, z =
1, ..., pNs, and npy, stands for the number of DNs. Note
that every type of nodes, introduced in Figure 1, has a set
and the sum of all the nodes” sets is the set of all junctions
in the network.

Py = ¢, max {0, Zlélgﬁs{—l?z}} 4)

In Equation (5), ¢; is a penalty factor, and pg., is a
desirable pressure, defined by national drinking water
regulations.

P3;=c;3 max {0, pges + AZ; — p;}

i€ERNs & SFCs
5)

iERNs & SFCs
In Equation (6), ¢, is a penalty factor and the con-
straint implies that the number of CCs in every SFC
(N ggfi) should be less than the allowable number of CCs

allowable
(NCCS )

2

NSECs
_ SFC; _ prallowable
Pi=c, ; (é}%’& {O,NCCS Nallo }) ©)

Every case study has a subset of pipes that, for practi-
cal reasons, cannot be changed (fixed pipes). These pipes
are not represented as decision variables in RSO. Hence,
the decision variables exclude fixed pipes from the design
process within the optimization.

85UB017 SUOLIWOD BAIES.D 8|t |dde 8y} Aq pausench afe sa[011e YO 8Sn JO s3|n. 104 Arig1T 8UIUO /8|1 UO (SUO N IPUOD-PUR-SWIRH WO A8 1M AfeJq U1 UO//SANY) SUORIPUOD PUe SW.B 1| 8U} 89S *[6Z02/60/TT] Uo Ariq1 aulluO A8|IM ‘9E00L B0IW/TTTT OT/I0P/LL0D A1 Aeiq 1 pul|uo//Sany woy papeojumod ‘0 ‘2998.9%T



‘L WILEY

@ MINAEI ET AL.

[ Actions for Computational Efficiency of WDNs Optimization Problems |

[ Step 1: Pre-Optimization Processing | [ Step 2: Optimization Processing |

[ Step 3: Post-Optimization Processing |

[ Network Study and Graph Analysis |

1- Search Space Reduction, 2-
Constraint Handling, 3- Objectives
Formulating, 4- Multi Stages, 5-
Parallel Computation

Solutions Study, Filtering and Multi
Criteria Assessments

FIGURE 2
optimization problems.

2.3 | Strategies for enhancing the
computational efficiency of RSO

The RSO refers to a very complex and constrained opti-
mization problem, and therefore its application to real-
world WDNSs is computationally burdensome. Hence, the
current study proposes some actions to enhance the com-
putational efficiency and flexibility of RSO. These actions
are applied in three steps: (1) pre-optimization process-
ing, (2) optimization processing, and (3) post-optimization
processing (see Figure 2).

In Step 1, acomprehensive study of the problem’s nature,
case-study regulations, and practical considerations is car-
ried out to find decision variable constraints, for example,
fixed pipes in RSO. Furthermore, engineering judgment
and graph analysis were used to select “out of design” pipe
candidates. For example, if a problem includes a snapshot
hydraulic simulation and a pipe is connected to a dead-
end node without demand, the pipe does not need to be
redesigned within the optimization process.

In Step 2, there are five actions that could improve the
optimization’s computational efficiency. Having under-
stood the decision variable constraints in the previous
step, a search space reduction can be applied by impos-
ing limitations on decision variables. While constraints
on decision variables could bring benefits to computa-
tional efficiency in optimization, hydraulic and system
constraints could be important impediments to solution
quality. Hence, constraints should be handled with frugal-
ity, and efforts should be made to minimize the number
of systems and hydraulic constraints. Objectives should
be formulated with the least need for hydraulic simula-
tion (e.g., graph-based objectives) as hydraulic simulation
arguably impacts optimization run duration. Parallel com-
puting is another technique to cope with computational
costs.

In Step 3, the focus is on solutions obtained in Step 2,
checking feasibility, followed by sorting and prioritization
through multi-criteria assessments.

The next sections describe four computational effi-
ciency approaches. Therein, the optimization run can go
through either one or multiple times “Stages” in “Step” 2

Different steps and actions for improvements in the computational efficiency and practicality of real-world WDN

(Figure 2). For example, pre-optimization processing com-
pletes (Step 1) to enter optimization processing (Step 2). In
Step 2, optimization is run to obtain Stage 1 results and
use those results to initiate subsequent optimization run
(Stage 2).

231 | Approach1(AP1)

This approach refers to one-stage optimization leading
to flexible decision making as the problem with two
objectives is solved by the NSGA-II engine, minimizing
a graph-based water age (GWA) index and maximizing
a hydraulic resilience index of the network as shown in
Equation (7) where GWA and GRF stand for the water
travel time, calculated only by graphical properties of the
network (Sitzenfrei, 2021), and generalized resilience fail-
ure (Creaco et al., 2016a) indices for the whole network,
respectively.

Minimize (GW A, —GRF) (7)

The mathematical model indices are calculated by Equa-
tions (8) and (9) where for every DN z, n,, , refers to the
number of pipes belonging to the associated shortest path

L;
Vi

divided by the pipe j velocity (calculated by a hydraulic
solver, i.e., EPANET), which is water particle residence
time in pipe j and is considered as weights for shortest path

calculation.
npNs§pz [ Lj
z=1 j=1 Vj

NpNs

(05.,); for every pipe j, the — refers to the pipe j length

GWA = (®

GRF =1, +I; 9)

The GWA index represents the average water travel time
over the whole network, which gives a good approximation
for the real value of water age in the network (Sitzenfrei,
2021), named GWA in this study. GRF is equal to the sum
of two dimensionless resilience and failure indices. The
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resilience index I, is non-negative and expresses the ratio
of the power excess supplied to users to the power excess
exiting from WDN sources. The failure index Iy is non-
positive and shows the ratio of the power deficit supplied
to users to the desired power.

The two indices are calculated as follows where Q,
(m3/s)and H,, (m) are the vectors of outflow and head from
source, in turn; gy, (m3/s) is the vectors of real outflow
from nodes to users, calculating the demand after reduc-
ing the leakage with the pressure-driven approach. H (m)
is nodal heads, referring to the operational real heads of
the network. d (m3/s) and H,, (m) are the nodal demand
vectors and desired nodal heads for full demand satisfac-
tion (the theoretical design factors), respectively; finally,
Qp (m3/s) and Hp (m) are the pump flows vectors and
heads, respectively.

I = max (qz;serH - dTHdeS!O)
" QUHy+QUH, — dTHy,,

_ min (QLTcserH B dTHdes’ 0)
/ dTHdes

(10)

)

It should be noted that the numerator and denominator
in Equations (10) and (11) have units of m— and are propor-
tional to hydraulic power (i.e., flow X he;d), but they omit
the constant physical parameters such as fluid density and
gravitational acceleration. In summary, at pressure deficit
conditions, I, = 0 and —1 < GRF < 0 for the network; at
pressure surplus conditions, Iy = 0 and 0 < GRF <1 for the
network.

The outflow is calculated based on three conditions: (1)
when the pressure head at a node is lower than the mini-
mum required head, the node is considered out of services,
that is, no demand is satisfied; (2) when the pressure head
of a node is higher than the minimum head but lower
than the service head, the node is considered partially sat-
isfied; and (3) when the pressure head of a node is higher
than the service head, the node not only meets the full
design demand but also contributes to increased network
resilience during emergencies (Creaco et al., 20162). In this
context, a minimum pressure (pp,;,) is used to determine
the minimum head as described in Wagner et al. (1988).

The decision variables are the same as those in RSO.
However, AP1 imposes additional constraints on the
decision variables by leveraging a graph theory-based
approach. This method excludes pipes that lie on the
shortest paths from being considered for removal dur-
ing the optimization process. This aligns with a search
space reduction strategy aimed at improving the compu-
tational efficiency of the optimization. The shortest path is
determined through network decomposition, where each
pipe’s weight is determined as the ratio length/diameter,
based on the assumption that a water particle prefers
paths with shorter lengths and large diameters (Hajibabaei
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etal., 2023). Additional constraints on the decision variable
include not considering pipes in clusters connected to non-
DNs and fixed pipes for design decisions, further reducing
the search space.

Regarding the four system constraints of the problem,
Equations (3)-(6), APl categorizes them into the two
groups of (1) soft and (2) hard constraints. In this study, a
network design solution cannot be considered operable if
it violates hard constraints. If, however, it violates soft con-
straints, it can still function, though such solutions are not
desirable from a design perspective. Constraints one and
three are relevant with two different level of significance
as Pens < Pdes» Meaning that meeting constraint three will
certainly meet constraint one; hence, AP1 considers con-
straint one and three as hard and soft constraints. Other
hard and soft constraints are constraints two and four as
meeting the former one makes a network without neg-
ative pressures at nodes, and meeting the latter one just
decreases the number of CCs under water supply risk. The
soft constraints are considered as post-optimization crite-
ria for evaluating Pareto fronts’ solutions, and therefore
only the two system hard constraints are modeled in the
optimization. Hence, AP1 has only two system constraints,
and the two hydraulic constraints (conservation of mass
and energy) are met automatically in the hydraulic solver.

In contrast to the way constraints are handled in RSO,
AP1 handles the constraints through a tournament selec-
tion method in NSGA-II, which self-adaptively finds fea-
sible solutions within the optimization process. In this
regard, Minaei et al. (2020) showed the superiority of this
method for the optimization efficiency, compared to the
penalty factors method. The improved NSGA-II compares
a couple of individuals X and Y that are members of the
population and &y and 8y refer to the X and Y violations;
on this basis, Y is dominated by X only if:

* X meets feasibility constraints (6x = 0), and Y does not
meet (6y # 0);

* X and Y both do not meet the feasibility constraints, but
d0x < Oy;

* X and Y both meet the feasibility constraints, but the X
solution dominates the solution of Y;

* otherwise, Y dominates X.

Please refer to Minaei et al. (2020) for learning more
about the method.

2.3.2 | Approach 2 (AP2)

This approach refers to a one-stage optimization problem
formulation with two graph-based objectives and no
hydraulic and system constraints, generating a wide
variety of layouts for WDNSs. To the best of our knowledge,
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WDN optimization modeling without hydraulic and sys-
tem constraints is rare. However, it has the advantage of
searching beyond limited feasible spaces but the potential
shortcoming of generating a high number of infeasible
solutions. The two objectives are the topological resilience
index (Equation 12) and the network cost estimated by
Equation (13). The topological resilience index invented
by Creaco et al. (2016b) is calculated with Equation (12)
where, C, refers to a topological resilience index in this
study, and n, is the number of pipes in loops (pipes in
branched structures are not included in n,); C; is the
loop diameter uniformity index calculated by the ratio of
the mean to the maximum diameter of the generic Ith of
the n; loops (i.e., a loop with five pipes, average diameter
110 mm and maximum diameter 250 mm has C; = 0.44).

n
=1 Ci

p h

(12)

The cost function is calculated with Equation (13) where
uc; is the unit cost for pipe j depending on the diame-
ter of pipe. In this study, cost refers to the monetary value
of pipes across the entire network, including both old and
resized pipes (this does not represent the total replacement
cost).

"p
Cost = Zucj - L; 13)
j=1

In AP2 optimization, the key points are the correlation of
objectives with the ones introduced in AP1 and the degree
of conflict between them. These issues are assessed, and
their impact will be shown in the results section. Decision
variables and associated constraints are similar to those in
AP1.

2.3.3 | Approach 3 (AP3)
So far, two approaches have been explained. The
approaches are different in terms of techniques for
improving the computational efficiency in RSO. For
example, by trying AP1 on the RSO and analyzing the AP1
results, one could understand how relaxing soft system
constraints, graph-informed objective function and deci-
sion variable constraints, and NSGA-II with self-adaptive
constraint handling could improve the optimization speed
of convergence and the solutions quality. By trying AP2
and comparing the output results, one could understand
how much hydraulic-free optimization could improve
computational efficiency.

In line with trying different efficiency-improving tech-
niques, AP3 refers to two optimization stages where
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the first stage is the same as the optimization in AP2.
The solutions from stage one are used as “warm solu-
tions” for initiating the stage two optimization, which
is exactly AP1 optimization. By trying AP3, one could
understand the impacts of initiating the optimization with
warm solutions on the computational efficiency of designs
generations.

2.3.4 | Approach 4 (AP4)

In this approach, using a graph theory-based method,
optimal diameters are designed for the different network
topologies obtained from AP2 optimization (referring to
Step 2 in Figure 2 including one stage optimization). The
graph theory method for pipe diameter design refers to
the state-of-the-art approach by Sitzenfrei et al. (2020) and
Hajibabaei et al. (2023) where pipes’ diameter selection is
completed through the following two tasks:

Task 1: Graph-based network decomposition: The pro-
cess begins with network decomposition using a graph-
theoretic framework. In WDNs with multiple sources, DNs
are associated with specific reservoirs or sources. This asso-
ciation is based on nodal head values, ensuring that each
node is supplied by the most appropriate source. Conse-
quently, the first task involves estimating the nodal heads
and decomposing the networks generated by AP2 into
subnetworks. This graph-based estimation of nodal heads
considers the elevation of each source node and the energy
dissipation along the shortest path from each source to
every DN. The detailed methodology for this estimation
process is elaborated in Hajibabaei et al. (2023).

Task 2: Graph-based pipe diameter selection: Once the
network is decomposed into subnetworks, the graph-based
design approach proposed by Sitzenfrei et al. (2020) is
applied to each subnetwork to determine the optimal
diameter for each pipe from a topological point of view,
neglecting topographical arrangements. This method uti-
lizes the EBCQ metric (Equation 1), which provides a
robust estimation of the flow in each pipe (edge). By esti-
mating the flow in each pipe within a subnetwork, the
continuity equation is applied to compute the next larger
available diameter for each pipe j, in Equation (14), where
Dgyaitable refers to the available discrete diameter of pipe j
(mm), and V g, refers to design velocity (m/s) defined by
reasonable ranges, which can be found in national drink-
ing water regulations of the case study. If the calculated
diameter exceeds the maximum available size in the pre-
defined set, the maximum available diameter is assigned.

4 EBCQ(j)
D = ‘/—-— € Dyyai (14)
J ’7 T Vdesign available
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Following the design of individual subnetworks, the
optimal solutions for all network topologies are compiled
into a post-processing pool. These solutions undergo fea-
sibility analysis and non-dominated sorting based on the
objective functions of AP1, resulting in the formation of the
relevant Pareto front (see Step 3 in Figure 2).

As seen, EBCQ refers to graph theory design, which
needs deep graph analysis and study of the network.
Hence, this has the potential to give optimal solutions to
existing networks before applying any optimization. This
relates to Step 1 in Figure 2. However, as EBCQ design is
applied to every solution generated from the optimization
in AP2, this falls in the post-processing for AP4 (Step 3 in
Figure 2). Readers can refer to pseudocodes provided in the
online repository of the University of Innsbruck (https://
doi.org/10.48323/qezag-gkb63) for a better understanding
of AP4.

2.4 | Post hoc multi-criteria decision
making

The optimization results in the form of Pareto fronts
undergo post-processing to be assessed by different criteria
explained in the following:

1. Criterion 1 (hard constraints): The sum of values in
Equations (3) and (4) that refer to the strict testing of
solution feasibility. These are the sum of two system
constraints introduced as hard constraints in AP1.

2. Criterion 2 (pressure deficit of RN from desirable pres-
sure): This has been introduced in Equation (5) where
the value of this criterion is obtained without consider-
ing the penalty factor, referring to one of the soft con-
straints, thus showing the influence of the constraint
relaxation on the optimization performance.

3. Criterion 3 (number of SFCs with more than maxi-
mum allowable number of CCs): This refers to another
soft constraint of this study (Equation 6).

4. Criterion 4 (hydraulic resilience): This refers to the
GRF index introduced in Equation (9).

5. Criterion 5 (topology resilience): This is the criterion
introduced in Equation (12) expressing the perfor-
mance of every design solution in terms of uniformity
of diameters of pipes in loops and the loops number.
This criterion only focuses on the topology and graph
features of every solution.

6. Criterion 6 (GWA): This is the one introduced in Equa-
tion (8), which will show the superiority of every
solution in terms of GWA.

7. Criterion 7 (cost): For every solution, the design cost is
calculated by the cost function (Equation 13). This will
contribute to decision-makers selecting a design based
on an available budget.

59 WILEY--

8. Criterion 8 (CCs population in SFCs): Besides the
number of SFCs, the size of these clusters has great
importance in decision making for minimizing the
number of CCs affected by the failures of the feeding
pipes.

9. Criterion 9 (number of CCs to removed pipes): In the
RSO algorithm, Vertommen et al. (2022) allowed the
pipes with CCs to be candidates for removal. The rea-
son for this is the existence of a redundant path for
supplying such customers. They have also added such
customers size to the number of CCs in the closest
SFC to avoid this undesired design outcome. For the
sake of comparability with previous methodologies,
this study allows the optimization algorithm to remove
pipes with CCs; however, the number of CCs associ-
ated with removed pipes is considered a criterion for
evaluating solutions.

10. Criterion 10 (Total number of customers with high
risk of supply): In this study, the customers without
redundant paths for water supply are considered at
a high risk of receiving substandard supply service
where NZXS is the total number of CCs with a high risk
of substandard supply service because of being con-
nected via only one supply path, and NjL: stand for
the number of CCs associated with removed pipes.

NEES = NEE + N3 15)

As seen, the criteria can be categorized into the three
groups, (1) feasibility constraints (CR1-CR3), (2) perfor-
mance metrics (CR4-CR7), and (3) customer risk indi-
cators (CR8-CR10). Moreover, criteria and optimizations’
objectives are interchangeable. For example, topology
resilience is an optimization objective in AP2, while this is
a criterion for the outputs of AP1. This way Pareto fronts
provide further insights for decision-makers needing to
select the best design.

Even though the post hoc evaluation could signifi-
cantly contribute to the applicability of the design, there
could remain a certain level of practical infeasibility
when it comes to the construction phase, as real projects
are usually logistically complex, cost-intensive, and often
constrained by existing urban infrastructure, service con-
tinuity requirements, and regulatory approvals. Hence, the
mentioned criteria should be modified and adapted to
every particular case, making the master plan as practically
feasible and possible.

2.5 | Summary and computational
assessment for the design approaches

The methodology proposed four approaches for improve-
ments of RSO in two aspects of solutions quality and
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TABLE 2 The summary of design approaches used in this work.
Step 2
Optimization
Step 1 Stage 1 Stage 2 Step 3
Pre-processing Obj* Con* DV* Obj Con DV Post-processing
Graph
analysis 1 2 HC SC DVC PR* TD* 1 2 HC SC DVC PR TT EBCQ-D* FSF&S* CA*

APL v

GWA* HR* 2 2 3

AP2 4/ Cost TR* - - 3 v Y
AP3 4/ Cost TR - - 3 v Y
AP4 4/ Cost TR - - 3 v Y

GWA HR 2 2 3

SRR LW WY

Abbreviations: CA*, criteria assessment; EBCQ-D*, demand edge betweenness centrality design; FSF&S*, feasible solution finding and sorting; GWA, graph-based

water age; HR*, hydraulic resilience; PR*, pipe resizing; TD*, topology design;

TR*, topology resilience.

G
Graph Theory
Optimization

4

Hydraulic

Simulation in
ptimization

Multi Stage
Optimization
A 4

: Graph Theory h
Surrogate
Model Y,

‘ At least one component of optimization (objective function, decision
variable and constraint) is formulated with graph theory laws

’ Hydraulic Solver (EPANET) is needed in every generation of ‘
optimization

‘ Comprehensive and multi criteria assessment is carried out on every
solution of Pareto fronts

More than one optimization stage is run and warm solutions are used
for running subsequent optimization stages
‘ With graph metrics, a surrogate model is developed to mimic the
hydraulic behavior of WDNs and generate optimal designs

FIGURE 3

convergence computational speed. To accomplish this,
different approaches have been employed including (i)
the two-objective optimization using GWA and hydraulic
resilience of a network, (ii) search space reductions by
imposing constraints on decision variables, (iii) graph the-
ory design, (iv) multi-stage optimization together with
hydraulic- and constraint-free optimizations. Table 2 and
Figure 3 show the differences between approaches. Num-
bers in every row in Table 2 define the number of optimiza-
tion components including objectives (Obj), constraints
(Con) which are 1- hydraulic constraints (HC), 2- sys-
tem constraints (SC) and 3- decision variables constraints
(DVC).

As shown in Table 2 and Figure 3, all approaches
use graph analysis in the pre-optimization step. The
only approach with two optimization stages refers to
AP3. All approaches solve the optimization problem
with two objectives. Only the AP2 and AP4 include
hydraulic-simulation-free optimizations (either for objec-
tive or constraint calculations). The decision variable
types in all approaches are the same, which are pipe
resizing and a network’s topology design. Only AP1

Table 2 demonstration and fundamental theoretical connections and distinctions between the approaches.

and AP3 have system constraints. Two hydraulic con-
straints are used for all approaches that perform hydraulic
simulations.

Regarding boundary conditions and limitations, while
AP1 and AP3 are the most complete approaches in terms
of constraint modeling in optimization and the generation
of a high number of feasible solutions, they always need
to use a hydraulic solver, which can negatively impact the
speed of convergence. On the other hand, AP2 and AP4
leverage hydraulic-free optimization, which can accelerate
convergence but are weaker in terms of generating feasi-
ble solutions. Hence, the results from the approaches will
show whether graph theory in optimization contributes to
a fast search for hydraulically feasible solutions. This will
provide guidance to practitioners in selecting appropriate
methods for practical applications.

Overcoming the computational burden of the proposed
design processes is important and challenging as the scale
and complexity of the problem are very large and high.
To improve this issue, a parallel computation technique
was used to run all the optimizations and simulations
facilitated by the state-of-the-art approach to parallel
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Objective 2
Hypervolume indicator= A1+A2+A3+A4+A5

Pareto front solution

AL A2 A3 A4 A5

4 Reference point

>
Objective 1

FIGURE 4
front sample with five solutions: A1-AS5 refer to Areas 1 until 5.

Ilustrative hypervolume indicator for a Pareto

computing (Eliades et al., 2016). The criteria for assessing
the computational performance of the processes are the
number of objective function evaluations (N.F.E) and the
time (hours) taken to meet the convergence criterion.
N.F.E is the number of individuals in NSGA-II times the
number of generations.

A hypervolume indicator is used (Wang et al., 2023)
as the convergence criterion. The integral of areas below
Pareto fronts regarding reference point (Figure 4) is calcu-
lated from generation to generation within an optimization
process. Typically, this is done by adding a small mar-
gin (e.g., 10%) to the worst objective values during the
optimization run to ensure the hypervolume is properly
bounded. The change in area after a certain number of
generations should be less than a threshold value (6) so
that the convergence criterion is met and the optimization
terminates.

3 | CASESTUDY

An anonymous and very large-scale WDN in City X was
employed to show the application of the proposed optimal
design approaches. The utility’s goal is to transition toward
an alternative network design that improves water quality,
for instance, by reducing water residence times. The net-
work layout is shown in Figure 5A. The network model has
5191 links, including isolation valves and pipes. It has 4798
junctions, including demand, fire hydrant and GSNs, and
six reservoirs. Among the six reservoirs, only Reservoirs
3, 4, 5, and 6 refer to real ones feeding the network, and
the rest are pumping stations modeled as reservoirs. The
peak water demand observed on the day with the highest
demand in the past 10 years at 9:00 a.m. was increased by
10% in the model to account for potential future demand
growth. This adjusted demand is used by the water util-
ity to evaluate its service requirements under this future
scenario.

The maximum allowable CCs in an SFC are 50 where
enforced and desirable pressure values at RNs are 22.5 and
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TABLE 3 Commercial pipe diameters sizes and materials,
polyvinyl chloride (PVC), ductile cast iron and fiberglass (FNG)
(Vertommen et al., 2022).

Outer D; Roughness Unit cost
ID (mm) (mm) (€/m)
PVC-100 110 0.05 110
PVC-150 160 0.05 160
FNG-200 222 0.10 222
FNG-250 274 0.10 274
FNG-300 326 0.10 326
FNG-400 429 0.10 429

28 m, respectively. The minimum and service pressures
for calculating the nodes’ real outflows are 5 and 25.49
m, respectively, while leakages are neglected in this study.
The current average GWA is 9.02 h (Equation 8), and the
hydraulic resilience is about 92%, showing that the net-
work is currently performing well in terms of water supply.
As regards the hard constraints, the network meets the
hard constraints, but the soft constraints are not met. There
are five SFCs with more than 50 CCs, and the deficit viola-
tion of the desirable pressure at the RN reaches the values
of 2.26 m (Criterion 2) for all RNs. Even though the net-
work has many SFCs, most of them are not considered
because of their small sizes. Among the SFCs, SFC4 has
the maximum number of CCs where the total number of
CCs under high supply risk is 397 people for the existing
network.

The existing network’s monetary value is around €26.86
million (obtained by Equation 13). There are six different
pipe types with different materials and diameters to design
the network as shown in Table 3.

4 | RESULTS AND DISCUSSION

The NSGA-II Pareto fronts converged using a popula-
tion of 1000 individuals, the mutation rate of 0.07, and
0 = 0.01 (the threshold for hypervolume index change,
which is an expert choice). The choice of population size
is an important aspect affecting the optimization pro-
cess performance. The larger it is, the better the coverage
of trials in the search space, but when it goes beyond
a threshold value, it could negatively affect computa-
tional efficiency. Hence, a population size of 1000, as
well as other NSGA-II parameters like crossover and tour-
nament selection parameter rates, were tuned through
initial trial-and-error runs (more information about these
parameters can be found in the pseudocodes in the
online repository of the University of Innsbruck: https://
doi.org/10.48323/qezag-gkb63). All the Pareto fronts from
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of Pareto front solutions from different approaches.

different approaches converged after a certain N.F.E., and
design solutions were generated after a certain processing
time.

All design optimization algorithms were coded in
MATLAB R2021b. The optimization runs for the four
approaches were run on the same computer, which has an
Intel(R) Core (TM) i9-14900K 3.2 GHz processor and 128
GB of RAM. To ensure unbiased results, identical memory
and CPU resources were allocated for every optimization
run.
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(A) The case study layout, including the single-fed clusters and junctions’ properties. (B) Multi-criteria result for assessments

4.1 | Approaches evaluations with the
quality of solutions

Figure 5B presents the Pareto fronts for all approaches
where every Pareto front solution is evaluated by different
criteria. Each criterion is represented as a third dimen-
sion for every solution, displayed on the right side of each
graph, with values indicated by the markers’ face colors.
The Pareto front for AP2 is shown separately in all graphs
because its optimal design process focuses on balancing
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the objectives of cost and topology resilience. In contrast,
the optimal design processes in AP1, AP3, and AP4 aim to
balance two different objectives: GWA and GRF.

Asillustrated, all Pareto fronts demonstrate well-formed
trade-offs, validating the effective selection of conflict-
ing objectives across all the proposed multi-objective
optimization models.

Comparing Pareto fronts in Figure 5B(a) shows that AP2
includes some infeasible solutions (the red diamonds),
whereas all solutions in AP1, AP3, and AP4 are feasi-
ble. Among the 1000 optimal solutions from AP2 Stage 1,
only 82 were infeasible (91.8% frequency of feasible solu-
tion generation) demonstrating a high frequency feasible
solution. The infeasible solutions in AP2 are primarily
associated with cost-effective designs that feature smaller
diameters and fewer loops, compared to more expen-
sive designs. Hence, they cannot provide a diverse set
of cost-effective solutions. The significant jump in AP2
solutions from a design costing approximately €25 mil-
lion to one costing €50 million is due to the existence
of 12 large diameters in the secondary part of the net-
work for the expensive designs, which are removed in the
cheap designs. Practically, this provides valuable insight
for decision-makers when there are budget limitations and
limited feasible options for a low-cost network rehabilita-
tion plan. For example, by investing an additional amount
(around €2.5 million) they may not improve the topology
resilience of the design, but they can decrease the number
of CCs at risk of supply failure. Therefore, the final deci-
sion depends on the policy and priorities of the decision-
makers.

An interesting aspect of AP2 solutions is the number of
feasible designs despite the absence of hydraulic and sys-
tem constraints. This highlights the advantages of graph-
informed decision-variable constraints and the strong cor-
relation of AP2 objectives with those in other approaches.
Such an approach offers promising potential for real-world
WDN optimization, providing a faster method for gener-
ating near-optimal solutions (the approaches processing
run time is explained and compared in the next sec-
tion). The infeasible solutions in AP2 are displayed only in
Figure 5B(a) and 5B(g) to illustrate the infeasibility effects
on hydraulic resilience. In all other graphs for AP2, the
infeasible solutions have been filtered out.

Examining the Pareto fronts in Figure 5B(b), it is evi-
dent that the solutions from AP1 and AP3 dominate those
from AP4. This suggests that while EBCQ-D is a computa-
tionally efficient method for pipe sizing, it requires further
development to effectively address combined topology and
diameter design problems. Additionally, the approach falls
short, compared to others in generating diverse solutions
and feasible outcomes. Among the 301,000 generated solu-
tions in AP4, only 364 are feasible (0.0003%), demonstrat-
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ing a very low frequency of feasible solutions generation in
AP4.

The differences between AP1 and AP3 solutions are min-
imal, with AP3 demonstrating a slight advantage at the
knee points. This observation indicates that two-stage opti-
mization does not significantly enhance the performance
efficiency of the current study’s optimization problem in
terms of solution quality.

Regarding Criterion 2 (Figure 5B(c) and 5B(d)), none
of the solutions achieve a value of 0, which would indi-
cate meeting the desirable pressure for RNs. In general,
the design solutions perform reasonably well in this aspect,
except for some designs in AP1 and AP3 that exhibit short
water ages, with the criterion values ranging between 7
and 9 m. This may be attributed to specific configurations
following pipe removal, which lowers the RNs’ pressure
while maintaining short water ages.

For Criterion 3 (number of SFCs with more than 50
CCs), AP2 solutions show minimal violations, with values
of 5 or higher corresponding to infeasible solutions that
are not displayed in Figure 5B(e). In contrast, AP1, AP3,
and AP4 generate more diverse solutions for this crite-
rion, with no significant violations observed. As expected,
the hydraulic resilience is low for infeasible solutions of
AP2 (Figure 5B(g)); however, solutions with high topol-
ogy resilience have high hydraulic resilience. Similarly,
topology resilience (Criterion 5) shows higher values for
those solutions with higher values for GRF, which means
there is a good correlation between these two types of
resilience. The correlation between other optimization
objectives is well shown in Figure 5B(i) and 5B(j), where
the longer water age results in higher cost. Figure 5B(k)
and 5B(]) evaluates the Pareto front solutions in terms of
CCs sizes in SFCs with more than 50 CCs. As expected,
the AP2 solutions are not very diverse; however, AP1
includes a design with a maximum of 700 CCs in SFCs.
Compared to the CCs associated with removed pipes (Cri-
terion 9), AP2 solutions show higher diversity for Criterion
8. In this regard, solutions from AP1, AP3, and AP4
have higher CCs associated with removed pipes. Conse-
quently, the total CCs under risk are shown in Figure 5B(0)
and 5B(p) where the highest number goes to 1300 for
AP3.

4.2 | Approaches evaluations with the
speed of convergence

Table 4 shows optimization and post-processing
computational times for different approaches. The
pre-processing duration in this study is not consid-
ered as it requires expert input that could be different
from study to study. For every 1000 individuals, the
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TABLE 4 Computational costs of design approaches.

@ MINAEI ET AL.

N.F.E Time (h)

Optimization Optimization Post processing
Approach Stage 1 Stage 2 Sum. Stage 1 Stage 2 EBCQ-D* FSF&S* CA* Sum
AP1 202,000 - 202,000 56.11 - - - 0.31 ~56.42
AP2 459,000 = 459,000 19.41 = = 0 0.31 ~20
AP3 459,000 750,000 1,209,000 19.41 208.33 - - 0.31 ~228.05
AP4 459,000 = 459,000 19.41 = 0.27 80 0.11 ~100

Abbreviations: AP1, Approach 1; CA, criteria assessment; EBCQ-D, discharge edge betweenness centrality design; FSF&S*, feasible solution finding and sorting.

objective function evaluation time was measured mul-
tiple times, and the most frequently occurring value
was selected to calculate the total computational run-
time required to achieve convergence of the Pareto
fronts.

As shown in Table 4, AP2 exhibits the fastest com-
putational time, requiring approximately 20 h, while
AP3 demonstrates the slowest computational time, tak-
ing around 228.05 h. This highlights the advantage of
hydraulic-free optimization approach and the relaxation of
soft constraints, which significantly accelerates the solu-
tion generation process. AP3 has been identified in the
literature as a fast approach for diameter design problems.
However, its limitations in this context may be due to
the low quality of some individuals among the warm-start
solutions. Since Stage 1 lacks a filtration process for hard
and soft constraints, it can produce solutions that are fea-
sible in terms of layout or diameters but not both. These
differences can cause the optimization in Stage 2 to start
far from the global optimal solution, thereby potentially
misleading the NSGA-II algorithm. Readers should bear in
mind that the convergence criterion is strictly enforced in
this study, which could be another reason for the observed
slow convergence.

Despite being a hydraulic-free optimization approach,
AP4 does not achieve the fastest convergence due to a
computationally intensive post-processing step. In Stage
1, 1000 designs with varying configurations are generated,
and the EBCQ-D approach generated 301 optimal designs
for each configuration, resulting in 301,000 total designs.
During the EBCQ-D procedure, V jeq, is increased from
0.5to 3.5 m/s with the intervals of 0.01 m/s, resulting in 301
potential solutions for each obtained network’s topology
out of AP2.

While solo diameter design for 1000 configurations takes
just16.33 min using EBCQ-D, identifying feasible solutions
and sorting the Pareto front requires a further 80 h. How-
ever, AP4 achieves the fastest criteria assessment time,
at around 6.83 min (0.11 h), due to the smaller num-
ber of solutions in its Pareto fronts, compared to other
approaches.

4.3 | Comparisons between selected
solutions from approaches and GWA
validation

In line with the goal of the original study (Vertommen
et al., 2022), solutions from different approaches with the
shortest GWA are selected and compared in Table 5. As
regards SFCs with more than 50 CCs (CR3), AP1 performs
the best and has the same value as the existing network.

As for hydraulic resilience (CR4), AP1 and AP3 solutions
make better solutions while leaning the network. They per-
form better than AP2 and AP4 because of the optimization
objectives in AP1 and AP3, where GRF is one of the main
objectives.

Topology resilience (CR5) is improved by AP1 and AP2,
and the AP2 solution is the best. This is because the cri-
terion is one of the direct objectives of optimization in
AP2.

The best rank for GWA (CR6) goes for AP1, while the
least cost designs (CR7) are achieved by AP2 and AP4. The
best rank for the size of SFCs with more than 50 CCs (CRS)
and the number of customers associated with removed
pipes (CR9) is achieved by AP1, while the solutions from
AP3 and AP4 bring about the highest number of CCs under
water supply risk (CR10).

Looking at all the results of different approaches, it
could be understood that the performance of those that
have worked well on problems with fixed topology can-
not be guaranteed for topology change optimization. There
is no definitive answer to the question of which approach
is the best globally for all optimization efficiency prob-
lems. However, graph theory optimization implementa-
tion together with goal-oriented graph-informed decision
variable constraints, relaxing soft constraints and multi-
criteria Pareto assessments, could significantly cast light
on the road toward increasing the efficiency of WDNs
optimization problems.

One important argument in the current study could
be the validity of how GWA was calculated and used as
one objective in the optimization models. For this, 100
solutions were selected randomly from AP1 Pareto front,
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TABLE 5
Name CR*2 (m) CR3 CR4 (%) CR5 (%)
EX 2.26 5 92 53
AP1 4.21 5 92 60
AP2 2.85 5 87 63
AP3 4.72 7 91 47
AP4 3.33 6 77 57
Abbreviations: AP1, Approach 1; CR*, criteria, EX*, existing.
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FIGURE 6 Hydraulic and graph-based water ages for 100

random solutions of Approach 1 (AP1) and coefficient of
determinations values for two simulation times.

and the hydraulic-based water age (HWA) was calculated
by EPANET 2.2 and compared with GWA on the graphs
shown in Figure 6. For this, water ages for two simulation
periods of 10 and 4 days were analyzed assuming a fixed
demand pattern. As seen, for both simulation periods, the
coefficient of determinations shows high values with 0.96
and 0.92 for 10- and 4-days simulations, respectively. It
is worth mentioning that the two-timing experiments on
the validity of GWA provide strong evidence of its low
sensitivity to the extended period intervals and topology
variations as the solutions in Figure 6 contain different
topologies. We also ran a sensitivity analysis to see how the
95% confidence interval for R?> = 0.96 changes with differ-
ent sample sizes, 10, 50, 100, 200, 300, 400, and 500. The
results showed that once the sample size exceeds 100, the
interval stabilizes, ranging between 0.93 and 0.97. This sug-
gests that increasing the sample size beyond 100 has little
impact on the reliability of the estimate.

HWA for RSO solution was calculated roughly the same
as the one calculated for the current study’s best solu-
tion in terms of water age (AP1 solution with the lowest
GWA). While the RSO solution was obtained after about
250,000 N.E.E, the best solution in this study was achieved
only after 202,000 N.F.E. Vertommen et al. (2022) reported
that hydraulic experts from the water utility calculated the
HWA for RSO solution and existing designs and a decrease
from 7.5 to 3.6 h was achieved. This means that the cur-
rent study’s optimization result improved the water age
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Comparisons of selected design solutions from different approaches and the existing network.

CR6 (h) CR7 (M EUR) CRS CR9 CR10
9.02 26.86 397 0 397
5.87 25.68 397 81 477
8.15 24.66 453 149 602
5.96 2611 637 209 864
7.85 2410 573 290 863

by around 52% with around 20% higher efficiency than
RSO and better in terms of hydraulic resilience with 92%
against 74%, respectively. Accordingly, the improvement
in the efficiency relates only to the speed of convergence
during optimization. As shown in the literature, constraint
handling through tournament selection in NSGA-II has a
greater impact on solution quality than on computational
runtime (Minaei et al., 2020). Hence, when comparing
the key differences between AP1 and RSO, the efficiency
gains mainly come from graph-informed constraints on
decision variables, simpler objective function evaluations,
fewer hard constraints, and more effective optimization
post-processing using soft constraints.

5 | SUMMARY AND CONCLUSION

Pipe diameter and topology optimization of WDNs is a
complex and recently developed concept in the literature of
real-world WDN optimization problems. Moreover, large-
scale WDN optimization problems aiming to maximize
water quality and hydraulic resilience are highly con-
strained and computationally expensive decision-making
problems. This study, for the first time, proposed novel
approaches for the efficiently solving such optimization
problems by using a broadly adopted evolutionary multi-
objective optimization algorithm called NSGA-II. The
approaches leverage various techniques that have already
been introduced in the literature for pipe resizing prob-
lems, including (1) graph theory design where optimal pipe
diameters are generated by the use of a surrogate model fol-
lowing only graphical laws, (2) multi-staged optimization
where outputs of prior stage become warm solutions for
initiating the subsequent stage, (3) tournament selection
method for handling constraints in NSGA-II rather than
penalty factors method, and (4) decreasing constraints of
the problem through relaxing soft constraint and defining
constraints-inclusive objective functions. Accordingly, this
study developed a high-performance single-stage evolu-
tionary optimization algorithm where search space reduc-
tion is achieved by imposing a graph-informed constraint
on decision variables, excluding shortest path pipes from
removal decisions. Another strong feature of the model is
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its GWA objective function, which serves as a robust surro-
gate for HWA. The model is equipped with a comprehen-
sive hydraulic resilience indicator, generating numerous
alternatives along a Pareto front, ranging from solutions
with pressure deficit to pressure surplus. Soft constraints
are relaxed and serve as criteria for assessing alternatives,
while hard constraints are handled self-adaptively through
the tournament selection method. Another important fea-
ture of this study is the multi-criteria decision-making
model, which allows many exchangeable objectives and
criteria to be applied in evaluating alternatives from the
Pareto front. Finally, the superior approach (AP1 solu-
tion with the lowest GWA) managed to provide a design
solution that improved the water age by around 52% and
20% higher efficiency than the reference study’s approach.
Moreover, with the superior solution, other topological
and hydraulics aspects of the network including hydraulic
and topology resilience, the number of SFCs with more
than 50 CCs, desirable piezometric heads at RNs of the
SFCs, cost and the total number of CCs at high risk of
supply could be kept at a good level of desirability for
decision-makers.

This study introduced a road map to assist future
WDN optimization studies where the three methodol-
ogy steps (pre-processing, optimization processing, and
post-processing) could be used to achieve high-quality,
computationally efficient optimal and practical solutions.
Additionally, a parallel computing technique is used for
large-scale and time-consuming optimization problems.
However, there are important simplifications, limitations
and assumptions in the study as follows:

* The real-world WDN was simplified such that many
components and details were not simulated, including
leakages, pumps, valves, and so forth.

* Uncertainties in variables and parameters can signifi-
cantly impact the results. These include uncertainties in
the strict hypervolume indicator, different network char-
acteristics (velocity, demand, and flow conditions), and
NSGA-II parameters such as crossover, mutation and
tournament selection rate operators.

* The performance of only one evolutionary optimiza-
tion algorithm, NSGA-II, was assessed and others such
as water drop algorithms, particle swarm, simulated
annealing, and so forth, were not specifically consid-
ered. The outside-engine approach presented in this
work will be applied on other optimizers in future
endeavors.

* The degree of acceptability of relaxing soft constraints
in practical engineering applications was not analyzed
in this study.

» Water age and the uniformity of improvements in DNs
were not assessed.
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* There are different parallel computing techniques and
heuristic simplifications, such as reducing the number
of NSGA-II generations or using adaptive population
sizes, which were not investigated.

* The operating cost was not considered for evaluating the
cost function.

* The sensitivity of GWA to different demand patterns and
network topologies has not been analyzed.

These issues should receive appropriate attention, and
each one opens a new window for future research work.
Also, new research prospects were identified with show-
ing the weak points of previous approaches, which worked
well for pipe diameter design problems. For example,
graph theory pipe diameter design could produce 301,000
solutions in only 16.33 min, while the scale of achieving
optimal solutions in this study is in days. However, this
method has not yet worked well when it comes to a com-
bined diameter-topology design of real-world WDNs. This
is a great future research direction to advance graph the-
ory design, which can derive many optimal diameters, and
topology designs in the scale of minutes without using
optimization.

NOMENCLATURE

6y Constraint violation of individual X
dy Constraint violation of individual Y
NEES Total number of CCs with a high risk
NRES Number of CCs associated with removed pipes
ccs  Number of CCs in single-fed cluster i
N glé‘;wable Number of allowable CCs
AP Approach
¢ Penalty factor for penalty function
CCs Customer connections
cd Commercial diameters
C; The ratio of the mean to the maximum diam-
eter of the generic Ith of the n; loops
Con Constraints
C, Loop diameter uniformity index
d Nodal demands vector
Dgvailapie  Available discrete diameter
D; Pipej diameter
DNs Demand nodes
DVC Decision variable constraints
EBC Edge betweenness centrality
EBCQ(j) Demand-weighted EBC for node j
G Graph
GRF Generalized resilience failure index
GSN Green space node
GWA Graph-based water age
H Vector of nodal heads
H, Vector of heads from sources
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HC Hydraulic constraints
Hg.s Vector of desired nodal heads
HEN Highest elevated node
Pump head vector
I; Failure index
I, Resilience index
Pipe j length
N.FE Number of objective function evaluations
npys Number of demand nodes
n; Number of loops
Number of pipes
n,. Number of pipes belonging to the shortest
path between source node and demand node
Z
Number of pipes in loop
nsrcs  Number of single-fed clusters
NSGA-II Non-dominated sorting genetic algorithm II
Obj Objectives
P Penalty function
Ddes Desirable pressure at RNs
Pens Enforced pressure at RNs
p; Pressure at root node i
DPmin Minimum pressure
PP Primary part
SP Secondary part
Qp Vectors of outflow from sources
Q, Pump flows vector
quser  Vector of outflow from nodes to users
Q, Demand at demand node z
RNs Root nodes
RSO Reference study’s optimization
s Source node
SC System constraints
SFCs Single-fed clusters
SPI  Shortest path index
uc; Unit cost for pipe j
Viesign  Design velocity
v; Pipej velocity
WDNs Water distribution networks
AZ; Elevation difference RN; and HEN; for SFC;
© Threshold value for optimization convergency
o;, Shortest path between source nodes and node
Z
o.x Shortest path between nodes z and k
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